Basic Fluid Power Formulas

Linear Force or Thrust:		
Force (lbs) = Area (in ${ }^{2}$) \times Pressure (psi)	$F_{l b}=A R E A \times P S I$	$F_{l b}=A p$
Force (N) $=$ Area $\left(\mathrm{cm}^{2}\right) \times$ Pressure (bar) $\times 10$	$F_{N}=(A R E A \times B A R) \times 10$	$F_{N}=10(A p)$
Power (hydraulic):		
Power (hp) = Pressure (psi) x Flow (gpm) / 1714	$H P=\frac{P S I x G P M}{1714}$	$P_{h p}=\frac{p Q}{1714}$
Power (kW) = Pressure (bar) x Flow (lpm) / 600	$k W=\frac{B A R \times L P M}{600}$	$P_{k W}=\frac{p Q}{600}$
*When calculating for sizing a system's prime mover, multiply answer by the pump's efficiency \%.		
Power (pneumatic):		
Power (hp) = Pressure (psi) x Flow (cfm) / 229	$H P=\frac{P S I x C F M}{229}$	$P_{h p}=\frac{p Q}{229}$
Power (kW) = Pressure (bar) x Flow ($\mathrm{dm}^{3} / \mathrm{min}$) / 600	$k W=\frac{B A R \times m^{3} / M I N}{600}$	$P_{k W}=\frac{p Q}{600}$
Power (mechanical):		
Power (hp) = Torque (lb-in) x Speed (rpm) / 63025	$H P=\frac{L B \cdot I N \times R P M}{63025}$	$P_{\text {hp }}=\frac{T n}{63025}$
Power (hp) =Torque (lb-ft) x Speed (rpm) / 5252	$H P=\frac{L B . F T \times R P M}{5252}$	$P_{h p}=\frac{T n}{5252}$
Power (hp) = Torque (Nm) x Speed (rpm) / 7124	$H P=\frac{N m \times R P M}{7124}$	$P_{h p}=\frac{T n}{7124}$
Power (kW) = Torque (Nm) x Speed (rpm) / 9543	$k W=\frac{N m \times R P M}{9543}$	$P_{k W}=\frac{T n}{9543}$
Fluid Power Motor Torque:		
Torque (lb-in) = Displacement (cir) \times Pressure (psi) / 2π	LB. IN. $=\frac{\text { CIR } \times \text { PSI }}{6.28}$	$T_{\text {lbin }}=\frac{D p}{2 \pi}$
Torque (lb-ft) = Displacement (cir) x Pressure (psi)/ 24π	$L B . F T .=\frac{C I R \times P S I}{75.40}$	$T_{l b f t}=\frac{D p}{24 \pi}$
Torque (Nm) = Displacement (ccr) x Pressure (bar)/ 20	$N m=\frac{C C R \times B A R}{62.83}$	$T_{N m}=\frac{D p}{20 \pi}$
Cylinder Travel Speed:		
Speed (in/min) = Flow (cim) / Area (in ${ }^{2}$)	$I N / M I N=\frac{C I M}{A R E A}$	$v_{i p m}=\frac{Q}{A}$
Speed (cm/min) = Flow (ccm) / Area (cm^{2})	$C M / M I N=\frac{C C M}{A R E A}$	$v_{\text {cpm }}=\frac{Q}{A}$
Velocity of Oil in Hydraulic Lines:		
Velocity (ft/sec) = Flow (gpm) x $0.3208 /$ Area $\left(\mathrm{in}^{2}\right)$	$F T / S E C=\frac{G P M \times 0.3208}{A R E A}$	$v_{f p s}=\frac{0.3208 Q}{A}$
Velocity (m/sec) = Flow (lpm)/ Area $\left(\mathrm{cm}^{2}\right) \times 6$	$M / S E C=\frac{L P M}{A R E A \times 6}$	$v_{m p s}=\frac{Q}{6 A}$

Pump Flow Required for Hydraulic Cylinder (estimate):

$\begin{aligned} & \text { Flow } \left.(\mathrm{gpm})=\text { Area }\left(\mathrm{in}^{2}\right) \times 2 \times \text { Stroke (in) } \times \text { Duty Cycle (cycles } / \mathrm{min}\right) / \end{aligned}$	$G P M=\frac{2(A R E A \times S T R O K E) \times C P M}{231}$
$\begin{gathered} \text { Flow }(\mathrm{lpm})=\text { Area }\left(\mathrm{cm}^{2}\right) \times 2 \times \text { Stroke }(\mathrm{cm}) \times \text { Duty Cycle }(\text { cycles } / \mathrm{min}) / \\ 1000 \end{gathered}$	$L P M=\frac{2(A R E A \times S T R O K E) \times C P M}{1000}$
Converting Free Air to Compressed Air (standard atm. conditions):	
$\begin{gathered} \text { Compression Ratio }=\text { Operating Pressure }(\mathrm{psi})+14.7 / \\ 14.7 \end{gathered}$	$C . R .=\frac{P S I+14.7}{14.7}$
Compressed Air (scfm) = Free Air (cfm) \times Compression Ratio (C.R.)	$S C F M=C F M \times C . R$.
$\begin{gathered} \text { Compression Ratio }=\text { Operating Pressure }(b a r)+1.013 / \\ 1.013 \end{gathered}$	$\text { C. } R .=\frac{B A R+1.013}{1.013}$
Compressed Air (slpm) = Free Air (lpm) \times Compression Ratio (C.R.)	$S L P M=L P M \times C . R$.

Free air is ambient air at a given temperature and pressure, dependent on environmental conditions. The Compression Ratio is the ratio between the absolute discharge air and the absolute suction pressure. It is used to convert to compressed air delivery at standard atmospheric conditions ($14.7 \mathrm{psia}, 68^{\circ} \mathrm{F}, 36 \%$ relative humidity) at sea level.

Air Consumption for Pneumatic Cylinder (estimate):

Flow (scfm) = Area (in²) $2 \times$ Stroke (in) \times Duty Cycle (cycles/min)/ $1728 \times$ Compression Ratio (C.R.)

$$
S C F M=C . R \cdot\left(\frac{2(A R E A \times S T R O K E) \times C P M}{1728}\right)
$$

Sizing an Air Compressor:

Avergae System Demand (cfm) = Compressor Delivery (scfm) x Duty Cycle (\% on) / Compression Ratio (C.R.) $\times 100$	$C F M=\frac{S C F M \times D U T Y ~ C Y C L E ~ \%}{C \cdot R \cdot X 100}$	
On Time $(\mathrm{min})=$ Tank Volume $\left(\mathrm{in}^{3}\right) \times($ Max. Pressure $(\mathrm{psi})-$ Min. Pressure $(\mathrm{psi}))$ $/ 14.7 \times$ Compressed Air Flow (scfm)	ON TIME $=\frac{I N^{3} x\left(P S I_{\max }-P S I_{\min }\right)}{14.7 \times S C F M}$	$T_{\text {min }} \frac{V\left(p_{1}-p_{2}\right)}{14.7 \times Q}$

Sizing a Hydraulic Accumulator (isothermal conditions):

$$
\text { Combined Gas Law: } \mathrm{p}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}=\mathrm{p}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1} \text { (* use absolute values) }
$$

Where:

- $\mathrm{p}_{1}=$ Precharge Pressure (psia)
- $p_{2}=$ Minimum System Pressure (psia)
- $p_{3}=$ Maximum System Pressure (psia)

$$
\Delta V=\frac{\left(V_{1} p_{1}\right)\left(p_{3}-p_{2}\right)}{\left(p_{3} p_{2}\right)}
$$

- $\mathrm{V}_{1}=$ Empty Accumulator Gas Volume (in ${ }^{3}$)
- $\mathrm{V}_{2}=$ Accumulator Gas Volume (in ${ }^{3}$) @ P_{2}
- $V_{3}=$ Accumulator Gas Volume (in ${ }^{3}$) @ P_{3}
- $\Delta \mathrm{V}=$ Oil Outlet Flow $\left(\mathrm{in}^{3}\right)$

$$
V_{1}=\frac{\Delta V\left(p_{3} p_{2}\right)}{p_{1}\left(p_{3}-p_{2}\right)}
$$

Sizing a Valve:

Hydraulic Valve; Where:

- $C_{v}=$ Velocity Coefficient
- $\mathrm{Q}=$ Flow (gpm)

$$
C_{v}=\frac{Q \sqrt{S G}}{\sqrt{\Delta \boldsymbol{p}}}
$$

The metric equivalent to C_{v} is flow factor, noted as K_{v}. The equation is identical, though the units of flow used are cubic meters per hour ($\mathrm{m}^{3} / \mathrm{hr}$) and units of pressure used are bar.

Pneumatic Valve; Where:

- $\mathrm{C}_{\mathrm{v}}=$ Velocity Coefficient
- $\mathrm{Q}=$ Flow (scfm)
- $\Delta p=$ Differential pressure between inlet $\&$ outlet (psi)
Subsonic Flow:

$$
C_{v}=\frac{Q \sqrt{S G}}{\sqrt{p_{2} \Delta p}}
$$

Sonic Flow (choked flow):

$$
c_{v}=\frac{Q \sqrt{S G}}{\left(\frac{p_{1}}{2}\right)}
$$

- $\mathrm{p}_{1}=$ Absolute Inlet Pressure (psia)
- $p_{2}=$ Absolute Outlet Pressure (psia)
- \quad SG = Specific Gravity of Gaseous Media

$$
Q=C_{v} \sqrt{\frac{p_{2} \Delta p}{S G}}
$$

- Critical velocity is reached when absolute downstream (outlet) pressure is less than or equal to 53% of absolute upstream (inlet) pressure.

The metric equivalent to C_{v} is flow factor, noted as K_{v}. The equations are identical, though the units of flow used are normal cubic meters per hour ($\mathrm{m}^{3} / \mathrm{hr}$) and units of pressure used are bar/bara.

$$
C_{v}=\frac{K_{v}}{\mathbf{0 . 8 6}} \quad K_{v}=0.86 C_{v}
$$

General Information and "Rules of Thumb":

Estimating pump drive horsepower: 1 hp of input drive for each 1 gpm at $1,500 \mathrm{psi}$ pump output Horsepower when idling a pump: an idle and unloaded pump will require about 5% of its full rate hp Reservoir capacity (Gallons) = length (in) x width (in) x height (in) x air gap\% / 231
Oil compressibility: 1/2\% approximate volume reduction for every 1,000 psi of pressure
Wattage to heat hydraulic oil: each 1 watt will raise the temperature of 1 gallon of oil by $1^{\circ} \mathrm{F}$ per hour
$1 \mathrm{HP}=0.746 \mathrm{~kW}=2545 \mathrm{BTU} / \mathrm{hr}=746 \mathrm{Watts}=44,760$ Joules $/ \mathrm{min}$
$1 \mathrm{bar}=14.5 \mathrm{psi}=100 \mathrm{kPa}=0.987 \mathrm{~atm}=29.603^{\prime \prime} \mathrm{Hg}$
1 atm $=14.7 \mathrm{psi}=1.013$ bar $=29.921^{\prime \prime} \mathrm{Hg}$
$1^{\prime \prime} \mathrm{Hg}=0.49 \mathrm{psi}=13.609^{\prime \prime} \mathrm{H}_{2} \mathrm{O}$
$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$
$1 \mathrm{in}^{3}=16.387 \mathrm{~cm}^{3}$
$1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}=929 \mathrm{~cm}^{2}$
$1 \mathrm{ft}^{3}=1728 \mathrm{in}^{3}=28.317$ liters $=7.481$ gallons
1 gallon $=3.785$ liters $=231 \mathrm{in}^{3}=0.134 \mathrm{ft}^{3}$
$1 \mathrm{lb}-\mathrm{ft}=12 \mathrm{lb}-\mathrm{in}=1.356 \mathrm{Nm}$
$1 \mathrm{~meter} / \mathrm{sec}=3.28 \mathrm{ft} / \mathrm{sec}=39.36 \mathrm{in} / \mathrm{sec}$
${ }^{\circ} \mathrm{C}=5 / 9\left({ }^{\circ} \mathrm{F}-32\right)$; ${ }^{\circ} \mathrm{F}={ }^{\circ} \mathrm{C} x 9 / 5+32$
${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273.7 ;{ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.7$

Guidelines for flow velocity in hydraulic lines:

2 to $4 \mathrm{ft} / \mathrm{sec}=$ suction lines
10 to $15 \mathrm{ft} / \mathrm{sec}=$ pressure lines up to 500 psi
15 to $20 \mathrm{ft} / \mathrm{sec}=$ pressure lines $500-3,000 \mathrm{psi}$
$25 \mathrm{ft} / \mathrm{sec}=$ pressure lines over 3,000 psi
$4 \mathrm{ft} / \mathrm{sec}=$ any oil lines in air-over-oil systems

